
© 2012 Carnegie Mellon University

Source Code Analysis
Laboratory (SCALe)

2

About CERT
Software Engineering Institute (SEI)

• Federally funded research and development center at Carnegie Mellon
University

CERT Coordination Center (CERT/CC)
• Incident response

— Morris worm (1988)

Cyber Threat and Vulnerability Analysis (CTVA)
• Vulnerability analysis and coordination
• Malicious code analysis
• Network analysis
• Incident handling

Secure Software and Systems (SSS)
• Secure Coding
• Cyber security engineering

3

CERT Program
Carnegie
Mellon Un

S

Acquisition
Support CERT

Enterprise and
Workforce

Development

Digital
Investigations

and Intelligence

Cyber Threat
and

Vulnerability
Analysis

Secure
Software and

Systems

Research
Technology and

Systems
Solutions

Software
Engineering

Process

4

Increasing Vulnerabilities

Reacting to vulnerabilities in
existing systems is not working

5

Why Software Security?
Developed nations’ economies and defense depend, in large
part, on the reliable execution of software
Software is ubiquitous, affecting all aspects of our personal
and professional lives.
Software vulnerabilities are
equally ubiquitous, jeopardizing:

• Personal identities
• Intellectual property
• Consumer trust
• Business services, operations,

& continuity
• Critical infrastructures & government

6

Application Security

7

University courses
• CMU
• Stevens Institute
• Purdue
• University of Florida
• Santa Clara University
• St. John Fisher College

Adoption by Analyzer Tools
• LDRA
• Klocwork

Analyzer
conformance test

SCALe
Testbed

Secure Design
Patterns Influence International

Standard Bodies

B
re

ad
th

 o
f i

m
pa

ct

2003 Time 2014

Adoption by software developers and
acquirers
• Cisco
• Raytheon
• NAVSEA
•Lockheed Martin Aeronautics
• General Atomics
•Qualcomm

WG14 C Secure Coding
Rules Study Group

Open & free online course
• USC, Matt Bishop
• Stevens, Sven Dietrich
• CMU

Secure Coding

•Thread role analysis
• Security-enhanced compiler

SEI Secure
Coding Course

Licensed to:
• Computer Associates
• Siemens

8

CERT Secure Coding Standards

 CERT C Secure Coding Standard
• Version 1.0 (C99) - published
• Version 2.0 (C11) - under development

 CERT C++ Secure Coding Standard
• Version 1.0 (C++ 11) under

development
CERT Oracle Secure Coding Standard
for Java

• Version 1.0 for Java SE 6 published
• Static analysis under development

The CERT Perl Secure Coding Standard
• Version 1.0 under development

Develop
Guidelines

Develop
checkers

Evaluate
checkers by
analyzing

source code

9

The CERT C Secure Coding Standard
Developed with community
involvement, including over
500 registered participants
on the wiki.
Version 1.0 published by
Addison-Wesley in
September, 2008.

• 134 Recommendations
• 89 Rules

10

Noncompliant Examples & Compliant Solutions

Noncompliant Code Example
In this noncompliant code example, the char pointer p is
initialized to the address of a string literal. Attempting to modify
the string literal results in undefined behavior.
 char *p = "string literal"; p[0] = 'S';

Compliant Solution
As an array initializer, a string literal specifies the initial values
of characters in an array as well as the size of the array. This
code creates a copy of the string literal in the space allocated
to the character array a. The string stored in a can be safely
modified.
 char a[] = "string literal"; a[0] = 'S';

11

Distribution of C Recommendations

11

16

13

16

4

3

9

11

17

5

3

7

16

3

0 5 10 15 20

Preprocessor (PRE)

Declarations and Initialization (DCL)

Expressions (EXP)

Integers (INT)

Floating Point (FLP)

Arrays (ARR)

Characters and Strings (STR)

Memory Management (MEM)

Input Output (FIO)

Environment (ENV)

Signals (SIG)

Error Handling (ERR)

Miscellaneous (MSC)

POSIX (POS)

12

Distribution of C Rules

2

7

9

6

5

9

8

6

15

4

5

3

2

8

0 2 4 6 8 10 12 14 16

Preprocessor (PRE)

Declarations and Initialization (DCL)

Expressions (EXP)

Integers (INT)

Floating Point (FLP)

Arrays (ARR)

Characters and Strings (STR)

Memory Management (MEM)

Input Output (FIO)

Environment (ENV)

Signals (SIG)

Error Handling (ERR)

Miscellaneous (MSC)

POSIX (POS)

13

POSIX
Many of the core guidelines demonstrate compliant solutions
that rely for POSIX-compliant systems.
The CERT C Secure Coding Standard also contains an
appendix with guidelines (3 recommendations and 8 rules) for
using functions that are defined as part of the POSIX family of
standards but are not included in ISO/IEC 9899-1999.
These rules and recommendations are not part of the core
standard because they do not apply in all C language
applications and because they represent an incomplete set.
The intent of providing these guidelines is to demonstrate how
rules and recommendations for other standards or specific
implementations may be integrated with the core C99
recommendations.

https://www.securecoding.cert.org/confluence/display/seccode/AA.+C+References

14

Risk Assessment
Risk assessment is performed using failure mode,
effects, and criticality analysis

Severity – how serious are the consequences of
the rule being ignored?

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal
termination

2 medium data integrity violation, uninten-
tional information disclosure

3 high run arbitrary code

Likelihood – how likely is it that a flaw introduced
by ignoring the rule can lead to an exploitable vul-
nerability?

Value Meaning

1 unlikely
2 probable
3 likely

Cost – the cost of mitigating the vulnerability.

Value Meaning Detection Correction

1 high manual manual
2 medium automatic manual
3 low automatic automatic

15

Priorities and Levels

16

CERT Mitigation Information

US CERT Technical Alerts

CERT Secure Coding Standard

Examples of vulnerabilities
resulting from the violation
of this recommendation can
be found on the CERT
website .

Vulnerability Note VU#649732
This vulnerability occurred as a
result of failing to comply with rule
FIO30-C of the CERT C
Programming Language Secure
Coding Standard.

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+EXP04-A&SearchOrder=4&SearchMax=0
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+keywords+contains+EXP04-A&SearchOrder=4&SearchMax=0
https://www.securecoding.cert.org/confluence/x/WwE

17

Secure Coding Standard for Java

“In the Java world, security is not
viewed as an add-on a feature. It is a
pervasive way of thinking. Those who
forget to think in a secure mindset end
up in trouble. But just because the
facilities are there doesn’t mean that
security is assured automatically. A
set of standard practices has evolved
over the years. The Secure®
Coding® Standard for Java™ is a
compendium of these practices.
These are not theoretical research
papers or product marketing blurbs.
This is all serious, mission-critical,
battle-tested, enterprise-scale stuff.”
–James A. Gosling, Father of the
Java Programming Language

18

Issues Not Addressed
Design and Architecture

• This standard assumes that the design and architecture
of the product is secure, that is, that the product is free of
design-level vulnerabilities that would otherwise
compromise its security.

Tools.
• As a federally funded research and development center (FFRDC),

the Software Engineering Institute (SEI) is not in a position to
recommend particular vendors or tools to enforce the restrictions
adopted.

• Users of The CERT Oracle Secure Coding Standard for Java are
free to choose tools; vendors are encouraged to provide tools to
enforce these rules.

19

Issues Not Addressed
Content

• This coding standard does not address concerns specific to only one
Java based platform but applies broadly to all platforms.

• For example, rules that are applicable to Java Micro Edition (ME) or
Java Enterprise Edition (EE) alone and not to Java SE are typically
not included.

• Within Java SE, APIs that deal with the user interface (User
Interface Toolkits) or with the web interface for providing features
such as sound, graphical rendering, user account access control,
session management, authentication, and authorization are beyond
the scope of this standard.

• However, this does not preclude the standard from discussing
networked Java systems given the risks associated with improper
input validation and injection flaws and suggesting appropriate
mitigation strategies.

20

Issues Not Addressed
Coding Style

• Coding style issues are subjective; it has proven impossible to
develop a consensus on appropriate style rules.

• Consequently, The CERT Oracle Secure Coding Standard for Java
recommends only that the user define style rules and apply those
rules consistently; requirements that mandate use of any particular
coding style are deliberately omitted.

• The easiest way to consistently apply a coding style is with the use
of a code formatting tool. Many integrated development
environments (IDEs) provide such capabilities.

21

Scope
The CERT Oracle Secure Coding Standard for Java focuses
on the Java Standard Edition 6 Platform (Java SE 6)
environment and includes rules for secure coding using the
Java programming language and libraries.
The Java Language Specification (3rd edition) [JLS 2005]
prescribes the behavior of the Java programming language
and served as the primary reference for the development of
this standard.
This coding standard also addresses new features of the Java
SE 7 Platform, primarily, as alternative compliant solutions to
secure coding problems that exist in both the Java SE 6 and
Java SE 7 platforms.

22

Source Code Analysis Laboratory
The CERT Source Code Analysis Laboratory
(SCALe) is an operational capability for application
conformance testing against one of CERT’s secure
coding standards.

• A detailed report of findings is provided to the customer
to repair

• After the developer has addressed these findings, the
product version is certified as conforming to the standard

• The certification is published in a registry of
certified systems

23

SCALe Process Overview
1. Client contacts CERT. The process is initiated when a client contacts CERT with a request to
certify a software system.

2. CERT communicates requirements. CERT communicates requirements to the customer,
including (1) selection of secure coding standard(s) to be used, (2) a buildable version of the software
to be evaluated, and (3) a build engineer.

3. Client provides buildable software. Client selects standard(s), provides a buildable version of
the software to be evaluated, and identifies the build engineer, who is available to respond to build
questions for the system.

4. CERT selects tool set. CERT chooses and documents the tool set to be used and procedures for
using that tool set in evaluation of the system.

5. CERT analyzes source code and generates conformance test report. CERT evaluates the
system against specified standard(s) and provides the conformance test results to the client and, if
the system is found to be conforming, issues a certificate and terminates the conformance testing
process.

6. Client repairs software. Client has the opportunity to repair nonconforming code. Client sends
system back to CERT for final evaluation.

7. CERT issues conformance tests results and certificate. CERT reevaluates the system using
the tools and procedures used in the initial assessment. CERT provides the conformance test results
to the client and, if the system is found to be conforming, a certificate.

24

Government Demand
CERT secure coding initiative has performed source code
assessments for various government agencies.
The Application Security and Development Security Technical
Implementation Guide (STIG)

• is being specified in DoD acquisition programs' Request for
Proposals (RFPs).

• provides security guidance for use throughout an application's
development lifecycle.

Section 2.1.5, “Coding Standards” of the Application Security
and Development STIG identifies the following requirement:
(APP2060.1: CAT II) The Program Manager will ensure the
development team follows a set of coding standards."

25

Industry Demand
Conformance with CERT Secure Coding Standards
can represent a significant investment by a software
developer, particularly when it is necessary to refactor or otherwise
modernize existing software systems.
However, it is not always possible for a software developer to
benefit from this investment, because it is not always easy to market
code quality.
A goal of conformance testing is to provide an incentive for industry to
invest in developing conforming systems.

• perform conformance testing against CERT secure coding standards
• verify that a software system conforms with a CERT secure coding

standard
• use CERT “seal” when marketing products
• maintain a certificate registry with the certificates of conforming systems

26

CERT SCALe Seal
Developers of software that has been determined by CERT to
conform to a secure coding standard may use the to describe
the conforming software on the developer’s website.
The seal must be specifically tied to the software passing
conformance testing and not applied to untested products, the
company, or the organization.
Use of the CERT SCALe seal is contingent upon the
organization entering into a service agreement with Carnegie
Mellon University and upon the software being designated by
CERT as conforming.

27

Source Code Analysis Laboratory

28

SCALe

Merged
flagged

non-
conformities

 Probable
violations

Confirmed
violations

Analysis Tool

Analysis Tool

Analysis Tool

Client Code

Flagged
non-

conformities

Build
Environment

Conformance Testing Process

29

Conformance Testing
The use of secure coding standards defines a proscriptive set of rules
and recommendations to which the source code can be evaluated
for compliance.
For each secure coding standard, the source code is certified as provably
nonconforming, conforming, or provably conforming against each guideline
in the standard:

Evaluation violations of a particular rule ends when a “provably
nonconforming” violation is discovered.

Provably
nonconforming

The code is provably nonconforming if one or more violations of
a rule are discovered for which no deviation has been allowed.

Conforming The code is conforming if no violations of a rule can be identified.

Provably
conforming

Finally, the code is provably conforming if the code has been
verified to adhere to the rule in all possible cases.

30

False Positives

Flagged
Nonconformities
per Rule

Nominal Limiting Quality in Percent (LQ)

0.5% 0.8% 1.25% 2.0% 3.15% 5.0%

16 to 25 100% sampled 100% sampled 100% sampled 100% sampled 100% sampled 100% sampled

25 to 50 100% sampled 100% sampled 100% sampled 100% sampled 100% sampled 28

51 to 90 100% sampled 100% sampled 100% sampled 50 44 34

91 to 150 100% sampled 100% sampled 90 80 55 38
151 to 280 100% sampled 170 130 95 65 42
281 to 500 280 220 155 105 80 50
501 to 1200 380 255 170 125 125 80

[1] If the required sample size is greater than the bucket size, then the sample size is the bucket size.
[2] At this LQ value and bucket size, the sampling plan actually would allow one observed true positive in the sample investigated, but the SCALe analyst
will remain using the zero observed true positive rule to decide if the bucket is acceptable or not.
[3] Same comment as the previous footnote

Static analysis tools frequently generate large numbers of false positives
A statistical sampling approach (lot tolerance percent defective (LTPD)) is used to select
a random sample of flagged nonconformities from a given bucket for further investigation.
The following table shows the number of samples evaluated based on the number of
flagged nonconformities per rule and LQ (by default, SCALe uses 2.0%).

31

Analysis Procedure
1. Identify the Nominal Quality Level (LQ) desired for the security analysis.
2. Group flagged nonconformities for a given security rule into buckets.
3. Use the table to identify the required sample size (n). Note that at the 2% LQ, all

flagged nonconformities are investigated if the bucket totals 50 or less.
4. Select the specified number (n) of random nonconformities from the flagged

nonconformities in the bucket.
5. Investigate each flagged nonconformity in the sample to determine whether it is

a false or true positive flagged nonconformity and label accordingly.
6. If all flagged nonconformities in the sample are false positives, all flagged

nonconformities in the bucket are discarded as false positives.
7. If a flagged nonconformity in the sample is determined to be a violation of the

secure coding rule, it is categorized as a confirmed violation. No further
investigation is conducted of the remaining nonconformities in the bucket. The
remaining flagged nonconformities in the bucket that were not investigated are
categorized as probable violations.

32

Deviation Procedure
Strict adherence to all rules is unlikely; consequently,
deviations associated with specific rule violations are
necessary.
Deviations can be used in cases where a true positive finding
is uncontested as a rule violation but the code is nonetheless
determined to be secure.
This may be the result of a design or architecture feature
of the software or because the particular violation occurs for
a valid reason that was unanticipated by the secure
coding standard.

• In this respect, the deviation procedure allows for the possibility that
secure coding rules are overly strict.

33

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

mailto:permission@sei.cmu.edu

34

For More Information
Visit CERT® web sites:
http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/

Contact
Robert C. Seacord
rcs@cert.org

(412) 268-7608

Contact CERT:
Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh PA 15213-3890

USA

http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/
mailto:rcs@cert.org

	Source Code Analysis Laboratory (SCALe)
	About CERT
	CERT Program
	Increasing Vulnerabilities
	Why Software Security?
	Application Security
	Secure Coding
	CERT Secure Coding Standards
	The CERT C Secure Coding Standard
	Noncompliant Examples & Compliant Solutions
	Distribution of C Recommendations
	Distribution of C Rules
	POSIX
	Risk Assessment
	Priorities and Levels
	CERT Mitigation Information
	Secure Coding Standard for Java
	Issues Not Addressed
	Issues Not Addressed
	Issues Not Addressed
	Scope
	Source Code Analysis Laboratory
	SCALe Process Overview
	Government Demand
	Industry Demand
	CERT SCALe Seal
	Source Code Analysis Laboratory
	Conformance Testing Process
	Conformance Testing
	False Positives
	Analysis Procedure
	Deviation Procedure
	Slide Number 33
	For More Information

